The inverse Galois problem over formal power series fields

نویسندگان

  • Moshe Jarden
  • Dan Haran
چکیده

Introduction The inverse Galois problem asks whether every finite group G occurs as a Galois group over the field Q of rational numbers. We then say that G is realizable over Q. This problem goes back to Hilbert [Hil] who realized Sn and An over Q. Many more groups have been realized over Q since 1892. For example, Shafarevich [Sha] finished in 1958 the work started by Scholz 1936 [Slz] and Reichardt 1937 [Rei] and realized all solvable groups over Q. The last ten years have seen intensified efforts toward a positive solution of the problem. The area has become one of the frontiers of arithmetic geometry (see surveys of Matzat [Mat] and Serre [Se1]). Parallel to the effort of realizing groups over Q, people have generalized the inverse Galois problem to other fields with good arithmetical properties. The most distinguished field where the problem has an affirmative solution is C(t). This is a consequence of the Riemann Existence Theorem from complex analysis. Winfried Scharlau and Wulf-Dieter Geyer asked what is the absolute Galois group of the field of formal power series F = K((X1, . . . , Xr)) in r ≥ 2 variables over an arbitrary field K. The full answer to this question is still out of reach. However, a theorem of Harbater (Proposition 1.1a) asserts that each Galois group is realizable over the field of rational function F (T ). By a theorem of Weissauer (Proposition 3.1), F is Hilbertian. So, G is realizable over F . Thus, the inverse Galois problem has an affirmative solution over F . The goal of this note is to prove the same result in a more general setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Automorphisms of Formal Power Series Rings over a Valuation Ring

The aim of this paper is to report on recent work on liftings of groups of au-tomorphisms of a formal power series ring over a eld k of characteristic p to characteristic 0, where they are realised as groups of automorphisms of a formal power series ring over a suitable valuation ring R dominating the Witt vectors W(k): We show that the lifting requirement for a group of automorphisms places se...

متن کامل

The Inverse Galois Problem for Orthogonal Groups

We prove many new cases of the Inverse Galois Problem for those simple groups arising from orthogonal groups over finite fields. For example, we show that the finite simple groups Ω2n+1(p) and PΩ4n(p) both occur as the Galois group of a Galois extension of the rationals for all integers n ≥ 2 and all primes p ≥ 5. We obtain our representations by studying families of twists of elliptic curves a...

متن کامل

Infinitesimal Group Schemes as Iterative Differential Galois Groups

This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard-Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal gro...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007